

DPP No. 17

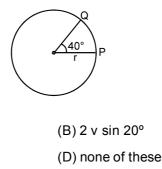
Total Marks : 28

Max. Time : 28 min.

Topics : Projectile Motion, Rectilinear Motion, Mathematical Tools

Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1 to Q.6	(3 marks, 3 min.)	[18, 18]
Multiple choice objective ('–1' negative marking) Q.7	(4 marks, 4 min.)	[4, 4]
Comprehension ('–1' negative marking) Q.8 to Q.9	(3 marks, 3 min.)	[6, 6]

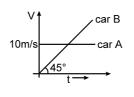
A stone projected at angle 'θ' with horizontal from the roof of a tall building falls on the ground after three second. Two second after the projection it was again at the level of projection. Then the height of the building is -


2. The maximum height attained by a projectile thrown over a horizontal ground is increased by 5%, keeping the angle of projection constant. What is the percentage increase in the horizontal range?

(A) 20%	(B) 15%	(C) 10%	(D) 5%
$(\cdot, \cdot) = \bullet / \bullet$		(0) 10 / 0	(_) • / •

3. A stone is projected from point A with speed u making an angle 60° with horizontal as shown. The fixed inclined surface makes an angle 30° with horizontal. The stone lands at B after time t. Then the distance AB is equal to .

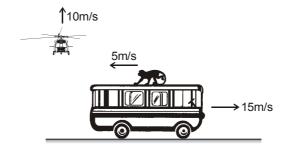
- 4. The velocity of a particle moving on the x-axis is given by $v = x^2 + x$ (for x > 0) where v is in m/s and x is in m. Find its acceleration in m/s² when passing through the point x = 2m(A) 0 (B) 5 (C) 11 (D) 30
- **5.** A particle is moving in a circle of radius r with constant speed v as shown in the figure. The magnitude of change in velocity in moving from P to Q is :


»

(A) 2 v cos 40°

(C) 2 v cos 20°

6. Initially car A is 10.5 m ahead of car B. Both start moving at time t = 0 in the same direction along a straight line. The velocity time graph of two cars is shown in figure. The time when the car B will catch the car A, will be

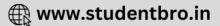


(A) t = 21 sec	(B) t = $2\sqrt{5}$ sec
(C) 20 sec.	(D) None of these

- 7. Two particles, one with constant velocity 50m/s and the other start from rest with uniform acceleration 10m/s², start moving simultaneously from the same position in the same direction. They will be at a distance of 125m from each other after
 - (A) 5 sec. (B) $5(1 + \sqrt{2})$ sec. (C) 10sec. (D) $10(\sqrt{2} + 1)$ sec.

COMPREHENSION

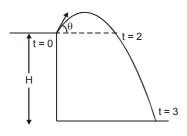
A bus is moving rightward with a velocity of 15 m/sec and on the bus a monkey is running oppositely with a velocity of 5 m/sec (with respect to the bus). Nearby a helicopter is rising vertically up with a velocity of 10 m/sec.



- 8. Find out the direction of the helicopter as seen by the monkey.
- 9. Find out the direction of the bus as seen by the helicopter's pilot.

<u>Answers Key</u>

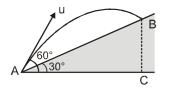
DPP NO. - 17								
1.	(D)	2.	(D)	3.	(A)	4.	(D)	5. (B)
6.	(A)	7.	(A), ((B) 8.	()	9.	(\)	


Get More Learning Materials Here : 📕

Hint & Solutions

DPP NO. - 17

1.
$$2 = \frac{2u_y}{g} \Rightarrow u_y = 10 \text{ m/s}$$



Now,
$$H = -u_y t + \frac{1}{2}gt^2$$

= -30 + 45 = 15 m.

3. The horizontal displacement in time t is

AC = u cos 60° t = $\frac{\text{ut}}{2}$

 \therefore Range on inclined plane = $\frac{AC}{\cos 30} = \frac{ut}{\sqrt{3}}$

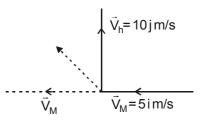
4. $V = x^2 + x$

$$a = V \frac{dv}{dx} = (x^{2} + x) (2x + 1)$$

At x = 2 m
a = (4 + 2) (4 + 1)
a = 30 m/s².

$$6. \quad x_{A} = x_{B}$$

 $10.5 + 10t = \frac{1}{2} at^2 a = tan45^\circ = 1$


$$t^2 - 20t - 21 = 0$$
 $t = \frac{20 \pm \sqrt{400 + 84}}{2}$ $t = 21$ sec.

7.
$$S_1 - S_2 = 125 \text{ m}$$
 if $S_1 > S_2$ then
 $50 \text{ t} - \frac{1}{2} \times 10 \text{ t}^2 = 125$
 $10 \text{ t} - \text{t}^2 = 25$
 $\text{t}^2 - 10 \text{ t} + 25 = 0$
 $\text{t} = 5 \text{ sec.}$
 $S_2 - S_1 = 125 \text{ m}$ if $S_2 > S_1$ then,
 $\frac{1}{2} \times 10 \text{ t}^2 - 50 \text{ t} = 125$
 $\text{t}^2 - 10 \text{ t} - 25 = 0$
 $\text{t} = \frac{10 + \sqrt{100 + 100}}{2}$
 $\text{t} = 5 (1 + \sqrt{2}) \text{ sec}$

(8 to 9) $\vec{V}_{hM} = \vec{V}_h - \vec{V}_M = 10 \text{ j} - 10 \text{i} = -10 \text{i} + 10 \text{ j}$

∴
$$\vec{V}_{hM}$$
 = 10 (–i) + 10 j ∴ As seen bny

the monkey helicopter is moving in (\checkmark) direction.

$$\vec{V}_{Bh} = \vec{V}_{B} - \vec{V}_{h} = 15 \text{ i} - 10 \text{ j} = 15 \text{ i} + 10 \text{ (j)}$$

$$V_{h}=10 \text{ jm/s}$$

Bus $\rightarrow V_{B}=5 \text{ im/s}$
 $-V_{h} \vee \vee \vee V_{Bh}$

 \therefore As seen by helicopter's pilot the bus is moving in (\searrow) direction.

Get More Learning Materials Here :

🕀 www.studentbro.in